Dynamics of Degradation: Monitoring Protein Turnover Rates in Response to Chemoresistance

Juan D. Chavez¹; Michael R. Hoopmann ²; Chad R. Weisbrod ¹; Jimmy K. Eng¹; James E. Bruce¹
University of Washington¹,
Institute for Systems Biology²
ASMS 2012
Problem of drug resistance

• Multi-drug resistance – Failure of Chemotherapy

• Model system – 3 drug resistant HeLa sublines
 – Cisplatin resistant: HeLa:CDDP – 1µM cisplatin (DNA damaging agent)
 – Paclitaxel resistant: HeLa:TXL – 20nM paclitaxel (Mitotic inhibitor)
 – SN-38 resistant: HeLa:SN100 – 100nM SN-38 (topoisomerase I inhibitor)

Overview

• Proteins display altered degradation rates with drug resistance?

• Stable isotope labeling by amino acids in cell culture (SILAC\(^1\)): pulse-chase experiment
 – Monitor protein degradation rates

• Examine changes in degradation rates between drug sensitive and three resistant HeLa cell lines

Protein Turnover

Degradation
1st order
[protein]
Proteasome/
Lysosome activity

Synthesis
0th order
[mRNA]
translation/transcription
Importance of Protein Turnover to Drug Resistance Problem

• Ubiquitin-proteasome system control of cell growth and tumorigenesis

• Proteasome inhibitors – combination anti-cancer therapies
 – Velcade (bortezomib)
 – salinosporamide A, carfilzomib...
Protein Turnover by SILAC

Light HeLa Cells

Lys-$^{13}C_6^{15}N_2$ & Arg-$^{13}C_6$ incorporation

Time

Heavy HeLa Cells

m/z

m/z

m/z

Time-point sampling

RIA = \frac{\text{area light}}{\text{area light} + \text{area heavy}}

LC-MS/MS analysis
Results Output

Peak list (Hardkläör) & Peptide ID (Mascot)

SILACtor

1) Accurate Mass & Retention Time Peptide Database

2) Combine Replicates

3) Target Peptides of Interest

4) Protein Quantitative Analysis

5) Multiple Time Point Analysis

Protein RIA = \frac{1}{n} \sum_{i=1}^{n} \text{peptide}_i \text{ RIA}

Peptide distribution

Peptide

Mass

RT

GNVGFVFTK

967.5127

31.2

IIQLLDDYPK

1216.6703

40.6

Exponential Decay Curve

\[y = e^{-0.027x} \]

\[R^2 = 0.9974 \]

\[k_{\text{loss}} = k_{\text{deg}} + k_{\text{dil}} \]
\[\lambda = \ln(2)/k_{\text{deg}} \]
Exponential Decay Curve

\[y = e^{-0.019x} \quad R^2 = 0.9599 \]

\[y = e^{-0.027x} \quad R^2 = 0.9963 \]

\[y = e^{-0.075x} \quad R^2 = 0.9131 \]

\[y = e^{-0.128x} \quad R^2 = 0.9748 \]
Protein overlap Venn diagram

\[k_{\text{diff}} = k_{\text{deg,Resistant}} - k_{\text{deg,Sensitive}} \]

k_{diff} Histograms

TXL
- Decreased k_{deg}
- Increased k_{deg}

SN100
- Increased k_{deg}

CDDP
- Decreased k_{deg}

10 common outliers:
- AT1A2_HUMAN
- BAF_HUMAN
- DRG1_HUMAN
- HN1_HUMAN
- TOPK_HUMAN
- CATD_HUMAN
- BUB3_HUMAN
- ITB1_HUMAN
- KINH_HUMAN
- PTPA_HUMAN

Increased k_{deg}

Decreased k_{deg}
TXL resistant altered k_{deg}

Mitosis/cell cycle
- Cullin-4a (prostate cancer biomarker) increased levels -> drug resistance
 - Sensitive $\lambda = 15.5$ hr
 - Resistant $\lambda = 21.7$ hr
- Mitotic checkpoint protein BUB3
 - Sensitive $\lambda = 13$ hr
 - Resistant $\lambda = 19$ hr
- 26S proteasome non-ATPase regulatory subunit 6
 - Sensitive $\lambda = 34.3$ hr
 - Resistant $\lambda = 23.4$ hr

Apoptosis/cell death
- Cathepsin D (breast cancer biomarker)
 - Sensitive $\lambda = 18.3$ hr
 - Resistant $\lambda = 9.8$ hr
- Signal Transducer and Activator of Transcription 1 (tumor suppressor activity)
 - Sensitive $\lambda = 17.8$ hr
 - Resistant $\lambda = 27.4$ hr
- DNA damage response/remodeling
 - MCM7
 - PSMD6
 - SSBP
 - ZFR
 - BAF
 - H14
 - ZFR

Cathepsin D
- DNA damage response/remodeling
- Sensitive $\lambda = 18.3$ hr
- Resistant $\lambda = 9.8$ hr
- Mitosis/cell cycle
- Apoptosis/cell death
SN38 resistant altered k_{deg}

Apoptosis/cell death

Mitosis/cell cycle

Mitotic checkpoint protein BUB3
Sensitive $\lambda = 13$ hr Resistant $\lambda = 17$ hr

Cathepsin D
(breast cancer biomarker)
Sensitive $\lambda = 18.3$ hr
Resistant $\lambda = 12.4$ hr

Lymphokine-activated killer T-cell-originated protein kinase
(colorectal cancer biomarker)
Sensitive $\lambda = 21.5$ hr
Resistant $\lambda = 16.2$ hr

26S proteasome non-ATPase regulatory subunits
Sensitive $\lambda = 29.5$ hr
Resistant $\lambda = 13.5$ hr

DNA damage response/remodeling

Mitotic checkpoint protein BUB3
Sensitive $\lambda = 13$ hr Resistant $\lambda = 17$ hr

Sensitive $\lambda = 18.3$ hr
Resistant $\lambda = 12.4$ hr

Sensitive $\lambda = 21.5$ hr
Resistant $\lambda = 16.2$ hr

Sensitive $\lambda = 29.5$ hr
Resistant $\lambda = 13.5$ hr

Sensitive $\lambda = 13$ hr Resistant $\lambda = 17$ hr
CDDP resistant altered k_{deg}

Apoptosis/cell death
- MSH6
- NICA
- PTPA
- CATD
- CDK1
- PSMD4
- ITB1
- PAK2

Mitosis/cell cycle
- CDK1
- CDK3
- CDK2
- CDK4
- CDK5
- CD123
- PSMD4
- TYSY
- TOPK
- BUB3
- PAK2

Mitotic checkpoint protein BUB3
Sensitive $\lambda = 13$ hr
Resistant $\lambda = 17$ hr

Cyclin dependent kinases
Sensitive $\lambda = 18$ hr
Resistant $\lambda = 28$ hr

Cathepsin D
(breast cancer biomarker)
Sensitive $\lambda = 18$ hr
Resistant $\lambda = 15$ hr

DNA mismatch repair protein
Sensitive $\lambda = 18$ hr
Resistant $\lambda = 15$ hr

DNA damage response/remodeling
- HAT1
- H14
- PSMD4
- MSH6
- CHD4
- TYSY
- SUMO2
- STAT3
- H13
- DLG1
- CD123
- TOPK
- TYSY
- CD123
Summary

• Dynamic proteome measurements provide insight into mechanism of drug resistance
• Several proteins with altered k_{deg} values related to mechanism of drug action
• Altered protein turnover rates may be effective biomarkers of drug resistance
• Future work: Relate changes in protein half-life to protein abundance level changes and protein-protein interactions
Acknowledgements

Jim Bruce
Chad Weisbrod
Jake Zheng
Xia Wu
Rick Harkewicz

Collaborators

Mike Hoopmann –
Institute of Systems Biology

Kohji Takara –
Himeji Dokkyo University

Funding

2R01GM086688
5R01GM097112
5R01RR023334
7S10RR025107

ASMS presentations
Chad - Poster: MP17 #398
Mike - Poster: MP28 #644
Michelle - Oral: TOD pm - Plant "omics" Time: 2:50
Jake - Poster: TP03 #61
Xia - Poster: WP09 #226
Jim - Oral: ThOE am - Biomolecular Structure Analysis by Covalent Labeling: Future Directions Time: 08:30
Xia - Poster: ThP12 #280

Chemical Elements

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>bromine</td>
<td>35</td>
<td>79.904</td>
</tr>
<tr>
<td>uranium</td>
<td>92</td>
<td>238.03</td>
</tr>
<tr>
<td>cerium</td>
<td>58</td>
<td>140.12</td>
</tr>
<tr>
<td>lanthanum</td>
<td>57</td>
<td>138.91</td>
</tr>
<tr>
<td>boron</td>
<td>5</td>
<td>10.811</td>
</tr>
</tbody>
</table>